
Appendix C Internal Representation of Data Types C-1

APPENDIX C

Internal Representation of Data Types

This appendix contains the detailed internal representations of the PDS standard data types listed
in Table 3.2 of the Data Type Definitions chapter of this document.

C.1 MSB_INTEGER

Aliases: INTEGER, MAC_INTEGER, SUN_INTEGER
__
MSB 4-byte integers:

* Bit 7 in i3 is used for the sign bit.
__
MSB 2-byte integers:

* Bit 7 in i1 is used for the sign bit.
__
MSB 1-byte integers:

* Bit 7 is used for the sign bit.
__
Where:

76543210 76543210 76543210 76543210

i-sign

i3 i2 i1 i0

b0 b1 b2 b3

76543210 76543210

i-sign

i1 i0

b0 b1

76543210

i-sign

i0

b0

C-2 Appendix C Internal Representation of Data Types

b0 - b3 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, and b3).

i-sign = integer sign bit

i0 - i3 = Arrangement of bytes in the integer, from lowest order to highest order. The
bits within each byte are interpreted from right to left, (e.g., lowest value =bit 0, highest value =
bit 7) in the following way:

4-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15
In i2, bits 0-7 represent 2**16 through 2**23
In i3, bits 0-6 represent 2**24 through 2**30

2-bytes:

In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-6 represent 2**8 through 2**14

1-byte:

In i0, bits 0-6 represent 2**0 through 2**6

All negative signed values are assumed to be twos-compliment.
__

C.2 MSB_UNSIGNED_INTEGER

Aliases:MAC_UNSIGNED_INTEGER, SUN_UNSIGNED_INTEGER,
UNSIGNED_INTEGER

MSB 4 byte unsigned integers:

__

76543210 76543210 76543210 76543210

i3 i2 i1 i0

b0 b1 b2 b3

Appendix C Internal Representation of Data Types C-3

MSB 2-byte unsigned integers:

__

MSB 1-byte unsigned integers:

__

Where:

b0 - b3 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, and b3).

i0 - i3 = Arrangement of bytes in the integer, from lowest order to highest order. The
bits within each byte are interpreted from right to left, (e.g., lowest value =bit 0, highest value =
bit 7) in the following way:

4-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15
In i2, bits 0-7 represent 2**16 through 2**23
In i3, bits 0-7 represent 2**24 through 2**31

2-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15

1-byte:
In i0, bits 0-7 represent 2**0 through 2**7

__

76543210 76543210

i1 i0

b0 b1

76543210

i0

b0

C-4 Appendix C Internal Representation of Data Types

C.3 LSB_INTEGER

Aliases: PC_INTEGER, VAX_INTEGER
__
LSB 4-byte integers:

* Bit 7 in i3 is used for the sign bit.
__
LSB 2-byte integers:

* Bit 7 in i1 is used for the sign bit.
__
LSB 1-byte integers:

* Bit 7 in i1 is used for the sign bit.
__

Where:
b0 - b3 = Arrangement of bytes as they appear when read from a file (e.g., read b0

first, then b1, b2, and b3).

i-sign = integer sign bit

i0 - i3 = Arrangement of bytes in the integer, from lowest order to highest order. The
bits within each byte are interpreted from right to left, (e.g., lowest value =

i-sign

76543210 76543210

i1i0

b2 b3

7654321076543210

i2 i3

b1b0

76543210

i-sign

i0

b0

76543210

i1

b1

76543210

i-sign

i0

b0

Appendix C Internal Representation of Data Types C-5

bit 0, highest value = bit 7) in the following way:

4-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15
In i2, bits 0-7 represent 2**16 through 2**23
In i3, bits 0-6 represent 2**24 through 2**30

2-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-6 represent 2**8 through 2**14

1-byte:
In i0, bits 0-6 represent 2**0 through 2**6

All negative signed values are assumed to be twos-compliment.
__

C.4 LSB_UNSIGNED_INTEGER

Aliases: PC_UNSIGNED_INTEGER, VAX_UNSIGNED_INTEGER
__

LSB 4-byte unsigned integers:

__
LSB 2-byte unsigned integers:

__
LSB 1-byte unsigned integers:

__

76543210 76543210 76543210 76543210

i3i2i1i0

b0 b1 b2 b3

76543210 76543210

i1i0

b0 b1

76543210

i0

b0

C-6 Appendix C Internal Representation of Data Types

Where:

b0 - b3 = Arrangement of bytes as they appear when read from a file (e.g., read b0 first, then
b1, b2, and b3).

i0 - 13 =Arrangement of bytes in the integer, from lowest order to highest order. The bits
within each byte are interpreted from right to left, (e.g., lowest value =bit 0, highest value = bit 7)
in the following way:

4-bytes:

In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15
In i2, bits 0-7 represent 2**16 through 2**23
In i3, bits 0-7 represent 2**24 through 2**31

2-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits 0-7 represent 2**8 through 2**15

1-byte:

In i0, bits 0-7 represent 2**0 through 2**7
__

C.5 IEEE_REAL

Aliases: FLOAT, MAC_REAL, REAL, SUN_REAL

__
IEEE 4-byte real numbers:

76543210 76543210 76543210 76543210

m2m1m0e1

b0 b1 b2 b3

m-sign
e0

Appendix C Internal Representation of Data Types C-7

IEEE 8-byte (double precision) real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.

IEEE 10-byte (temporary) real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.

Where:

b0 - b9 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, b3, etc.).

m-sign = Mantissa sign bit

int-bit = In l0 byte reals only, the implicit "1" is actually specified by this bit.

e0 - e1 = Arrangement of the portions of the bytes that make up the exponent, from
lowest order to highest order. The bits within each byte are interpreted from
right to left, (e.g.,lowest value = rightmost bit in the exponent part of the

 byte, highest value = leftmost bit in the exponent part of the byte) in the
following way:

4-bytes (single precision):
In e0, bit 7 represents 2**0
In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 127

8-bytes (double precision):

76543210 76543210 76543210 76543210

m2m0e0e1

b0 b1 b2 b3

m-sign

76543210 76543210 76543210 76543210

m1 m3 m4 m5 m6

b4 b5 b6 b7

76543210 76543210 76543210 76543210

m1e0e1

b0 b1 b2 b3

m-sign

76543210

m0 m2

b4

int-bit (always 1)

76543210 76543210 76543210 76543210

m6m4m3

b5 b6 b7 b8

76543210

m5 m7

b9

C-8 Appendix C Internal Representation of Data Types

In e0, bits 4-7 represent 2**0 through 2**3
In e1, bits 0-6 represent 2**4 through 2**10

Exponent bias = 1023

10-bytes (temporary):
In e0, bits 0-7 represent 2**0 through 2**7
In e1, bits 0-6 represent 2**8 through 2**14

Exponent bias = 16383

m0 - m7 = Arrangement of the portions of the bytes that make up the mantissa, from
highest order fractions to the lowest order fractions. The order of the bits
within each byte progresses from left to right, with each bit representing a
fractional power of two, in the following way:

4 -bytes (single precision):
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23

8-bytes (double precision):
In m0, bits 3-0 represent 1/2**1 through 1/2**4
In m1, bits 7-0 represent 1/2**5 through 1/2**12
In m2, bits 7-0 represent 1/2**13 through 1/2**20
In m3, bits 7-0 represent 1/2**21 through 1/2**28
In m4, bits 7-0 represent 1/2**29 through 1/2**36
In m5, bits 7-0 represent 1/2**37 through 1/2**44
In m6, bits 7-0 represent 1/2**45 through 1/2**52

10-bytes (temporary):
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23
In m3, bits 7-0 represent 1/2**24 through 1/2**31
In m4, bits 7-0 represent 1/2**32 through 1/2**39
In m5, bits 7-0 represent 1/2**40 through 1/2**47
In m6, bits 7-0 represent 1/2**48 through 1/2**55
In m7, bits 7-0 represent 1/2**56 through 1/2**63

__

These representations all follow the format:

1. (mantissa) x 2** (exponent - bias)
with the "1." part implicit (except for the 10-byte temp real, in which the "1." part is actually stored
in the third byte (b2)),

Appendix C Internal Representation of Data Types C-9

In all cases, the exponent is stored as an unsigned, biased integer (e.g., exponent-as-stored - bias =
true exponent value).
__

C.6 IEEE_COMPLEX

Aliases: COMPLEX, MAC_COMPLEX, SUN_COMPLEX

Two contiguous IEEE_REALs in memory, representing the real and imaginary parts.
__

C.7 PC_REAL

Aliases: None
__
PC 4-byte real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.
__
PC 8-byte (double precision) real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.

76543210 76543210 76543210 76543210

e1m0m1m2

b0 b1 b2 b3

m-signe0-bit

76543210 76543210 76543210 76543210

m3m5 e0m6

b0 b1 b2 b3

m-sign

76543210 76543210 76543210 76543210

m4 m2 m1 m0 e1

b4 b5 b6 b7

C-10 Appendix C Internal Representation of Data Types

PC 10-byte (temporary) real numbers:

__

Where:

b0 - b9 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, b3, etc.).

m-sign = Mantissa sign bit

int-bit = In 10 byte reals only, the implicit "1" is actually specified by this bit.

e0 - e1 = Arrangement of the portions of the bytes that make up the exponent, from
lowest order to highest order. The bits within each byte are interpreted from
right to left, (e.g., lowest value = rightmost bit in the exponent part of the
byte, highest value = leftmost bit in the exponent part of the byte) in the
following way:

4-bytes (single precision) :
In e0, bit 7 represents 2**0
In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 127

8-bytes (double precision) :
In e0, bits 4-7 represent 2**0 through 2**3
In e1, bits 0-6 represent 2**4 through 2**10

Exponent bias = 1023

10-bytes (temporary):
In e0, bits 0-7 represent 2**0 through 2**7
In e1, bits 0-6 represent 2**4 through 2**10

76543210 76543210 76543210 76543210

m4m6m7

b0 b1 b2 b3

76543210

m5 m3

b4

76543210 76543210 76543210 76543210

e0m1m2

b5 b6 b7 b8

76543210

m0 e1

b9

m-signint-bit

Appendix C Internal Representation of Data Types C-11

Exponent bias = 16383

m0 - m7 = Arrangement of the portions of the bytes that make up the mantissa, from
highest order fractions to lowest order fractions. The order of the bits within
each byte progresses from left to right, with each bit representing a
fractional power of two, in the following way:

4-bytes (single precision) :
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23

8-bytes (double precision) :
In m0, bits 3-0 represent 1/2**1 through 1/2**4
In m1, bits 7-0 represent 1/2**5 through 1/2**12
In m2, bits 7-0 represent 1/2**13 through 1/2**20
In m3, bits 7-0 represent 1/2**21 through 1/2**28
In m4, bits 7-0 represent 1/2**29 through 1/2**36
In m5, bits 7-0 represent 1/2**37 through 1/2**44
In m6, bits 7-0 represent 1/2**45 through 1/2**52

10-bytes (temporary) :
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23
In m3, bits 7-0 represent 1/2**24 through 1/2**31
In m4, bits 7-0 represent 1/2**32 through 1/2**39
In m5, bits 7-0 represent 1/2**40 through 1/2**47
In m6, bits 7-0 represent 1/2**48 through 1/2**55
In m7, bits 7-0 represent 1/2**56 through 1/2**63

__

These representations all follow the format:

1. (mantissa) x 2**(exponent - bias)

with the "1." part implicit (except for the 10-byte temp real, in which the "1." part is actually stored
in the third byte (b2)),

In all cases, the exponent is stored as an unsigned, biased integer (e.g., exponent-as-stored -
bias=true exponent value).

__

C-12 Appendix C Internal Representation of Data Types

C.8 PC_COMPLEX

Aliases: None

Two contiguous PC-REALs in memory, representing the real and imaginary parts.
__

C.9 VAX_REAL, VAXG_REAL

Aliases: VAX_DOUBLE (for VAX_REAL only, none for VAXG_REAL)
__
VAX F-type 4-byte real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.
__
VAX D-type 8-byte real numbers:

* Bit 7 in e1 is used for the mantissa sign bit.
__
VAX G-type 8-byte real numbers:

__

76543210 76543210 76543210 76543210

m1e1m0

b0 b1 b2 b3

m2

m-signe0

76543210 76543210 76543210 76543210

m1e1m0

b0 b1 b2 b3

m-sign

76543210 76543210 76543210 76543210

m2 m4 m3 m6 m5

b4 b5 b6 b7

e0-bit

76543210 76543210 76543210 76543210

m1e1m0

b0 b1 b2 b3

m-sign

76543210 76543210 76543210 76543210

m2 m4 m3 m6 m5

b4 b5 b6 b7

e0

Appendix C Internal Representation of Data Types C-13

VAX H-type 16-byte real numbers:

Where:

b0 - b15 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, b3, etc.).

m-sign = Mantissa sign bit

e0 - e1 = Arrangement of the portions of the bytes that make up the exponent, from
lowest order to highest order. The bits within each byte are interpreted from
right to left, (e.g., lowest value= rightmost bit in the exponent part of the
byte, highest value = leftmost bit in the exponent part of the byte) in the
following way:

4-bytes (F-type, single precision) :
In e0, bit 7 represents 2**0
In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 129

8-bytes (D-type, double precision) :
In e0, bit 7 represents 2**0
In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 129

8-bytes (G-type, double precision) :
In e0, bits 4-7 represent 2**0 through 2**3
In e1, bits 0-6 represent 2**4 through 2**10

Exponent bias = 1025

76543210 76543210 76543210 76543210

m0e1

b0 b1 b2 b3

76543210 76543210 76543210 76543210

m1 m3 m2 m5 m4

b4 b5 b6 b7

e0

76543210 76543210 76543210 76543210

m8m6

b8 b9 b10 b11

76543210 76543210 76543210 76543210

m9 m11 m10 m13 m12

b12 b13 b14 b15

m7

m-sign

C-14 Appendix C Internal Representation of Data Types

16-bytes (H-type) :

In e0, bits 0-7 represent 2**0 through 2**7
In e1, bits 0-6 represent 2**8 through 2**14

Exponent bias = 16385

m0 -m13 = Arrangement of the portions of the bytes that make up the mantissa, from
highest order fractions to lowest order fractions. The order of the bits within
each byte progresses from left to right, with each bit representing a
fractional power of two, in the following way:

4-bytes (F-type, single precision) :
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23

8-bytes (D-type, double precision) :
In m0, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23
In m3, bits 7-0 represent 1/2**24 through 1/2**31
In m4, bits 7-0 represent 1/2**32 through 1/2**39
In m5, bits 7-0 represent 1/2**40 through 1/2**47
In m6, bits 7-0 represent 1/2**48 through 1/2**55

8-bytes (G-type, double precision) :
In m0, bits 3-0 represent 1/2**1 through 1/2**4
In m1, bits 7-0 represent 1/2**5 through 1/2**12
In m2, bits 7-0 represent 1/2**13 through 1/2**20
In m3, bits 7-0 represent 1/2**21 through 1/2**28
In m4, bits 7-0 represent 1/2**29 through 1/2**36

‘ In m5, bits 7-0 represent 1/2**37 through 1/2**44
In m6, bits 7-0 represent 1/2**45 through 1/2**52

16-bytes (H-type) :
In m0, bits 7-0 represent 1/2**1 through 1/2**8
In m1, bits 7-0 represent 1/2**9 through 1/2**16
In m2, bits 7-0 represent 1/2**17 through 1/2**24
In m3, bits 7-0 represent 1/2**25 through 1/2**32
In m4, bits 7-0 represent 1/2**33 through 1/2**40
In m5, bits 7-0 represent 1/2**41 through 1/2**48
In m6, bits 7-0 represent 1/2**49 through 1/2**56
In m7, bits 7-0 represent 1/2**57 through 1/2**64
In m8, bits 7-0 represent 1/2**65 through 1/2**72
In m9, bits 7-0 represent 1/2**73 through 1/2**80

Appendix C Internal Representation of Data Types C-15

In m10, bits 7-0 represent 1/2**81 through 1/2**88
In m11, bits 7-0 represent 1/2**89 through 1/2**96
In m12, bits 7-0 represent 1/2**97 through 1/2**104
In m13, bits 7-0 represent 1/2**105 through 1/2**112

__

These representations all follow the format:

1. (mantissa) x 2**(exponent - bias)

with the "1." part implicit

In all cases, the exponent is stored as an unsigned, biased integer (e.g., exponent-as-stored
- bias = true exponent value).
__

C.10 VAX_COMPLEX, VAXG_COMPLEX

Aliases: None

Two contiguous VAX_REALs or VAXG_REALs in memory, representing the real and imaginary
parts.
__

C.11 MSB_BIT_STRING

Aliases: BIT_STRING
__
MSB n-byte bit strings:

As read from a file:

No byte swapping is needed.
Note: for n-byte bitstrings, continue pattern above.
__

MSB 2-byte bit strings:

76543210 76543210 76543210 76543210

bits
1-8

b0 b1 b2 b3

bits
9-16

bits
17-24

bits
25-32

bits
((nx8)-7) - (nx8)

b x (n-1)

. . .

C-16 Appendix C Internal Representation of Data Types

As read from file:

No byte swapping is needed.
__

MSB 1-byte bit strings:

As read from file:

No byte swapping is needed.
__

Where:

b0 - b3 =Arrangement of bytes as they appear when read from a file (e.g., read b0 first, then
b1, b2, and b3).

The bits within a byte are numbered from left to right:

__

C.12 LSB_BIT_STRING

Aliases: VAX_BIT_STRING
__
LSB 4-byte bit strings:

76543210 76543210

bits
1-8

b0 b1

bits
9-16

76543210

bits
1-8

b0

76543210

bit 8bit 1

Appendix C Internal Representation of Data Types C-17

As read from a file:

After bytes are swapped:

__
LSB 2-byte bit strings:

As read from a file:

After bytes are swapped:

__
LSB 1-byte bit strings:

As read from file:

No byte swapping is needed.
__

76543210 76543210 76543210 76543210

bits
25-32

b0 b1 b2 b3

bits
17-24

bits
9-16

bits
1-8

76543210 76543210 76543210 76543210

bits
1-8

b3 b2 b1 b0

bits
9-16

bits
17-24

bits
25-32

76543210 76543210

bits
9-16

b0 b1

bits
1-8

76543210 76543210

bits
9-16

b0b1

bits
1-8

76543210

b0

bits
1-8

C-18 Appendix C Internal Representation of Data Types

Where:

b0 - b3 =Arrangement of bytes as they appear when read from a file (e.g., read b0 first,
then b1, b2, and b3).

The bits within a byte are numbered from left to right:

76543210

bit 8bit 1

